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The non-integral value for the half period, . ~ (M< M <  M +  1, M:integer), as experimentally found in 
one-dimensional anti-phase domain structures, is explained by a disordered structure consisting of a 
mixture of two kinds of structure units with thicknesses of M and M +  1 layers. The diffraction intensity 
for the disordered structure is calculated by the use of  the general diffraction theory for a one-dimen- 
sionally disordered crystal given by Kakinoki & Komura [Acta Cryst. (1965), 19, 137]. With this model 
the non-integral value of the half period, 37/, can be explained as due to the shift between two peaks, one 
due to a simple APD (anti-phase domain) structure with half period, M, and the other to another 
simple APD structure with half period, M +  1. It is not necessary to consider a very large value of the 
period as was required in Fujiwara's model [Fujiwara, J. Phys. Soe. Japan (1957), 12, 7], which was 
proposed assuming a disordered structure, deviating from the standard structure defined by a step 
function. 

I. Introduct ion 

In some examples of one-dimensional  anti-phase 
domain  structures with an out-of-step vector u =  
(a+b) /2 ,  the ha l f  period, !Q, has experimentally been 
found to be non-integral,  as shown in Table 1. Fuji- 
wara (1957) explained this by assuming a disordered 
structure deviating from a standard structure which is 
defined by the use of a step function. The interpreta- 
tion of the non-integral structure and the relevant 
intensity equations were discussed in detail in part II of  
this series (Kakinoki  & Minagawa, 1972). In Fuji- 

wara 's  interpretation, however, the period P of  the 
standard structure should be subject to the relation 

P = Z v M  (1) 

where v is the m i n i m u m  positive integer to make 2vh~r 
equal to an integer P [refer to equation (F-4)'t- ]. 
Therefore, if we put 

A I = M + A M  with 0 < A M < I  (2) 

where M is an integer, then we have to assume a very 
high value of P, e.g., P =  321 for )14= 3.21 ( M =  3, 

* Present address: Department of Physics, Osaka Kyoiku t Equation (F-4) means equation (4) in Fujiwara's (1957) 
University, Tennoji, Osaka, Japan. paper. 
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AM=0.21) ,  and P=3213  for/~,/= 3.213, etc. However, 
such long periods seem to be unrealistic. 

In the present paper, we propose an alternative 
model of a disordered structure which is composed of 
two kinds of structure units with thicknesses of M and 
M + I  layers, where M < / 1 7 1 < M + I .  By this model, 
the non-integral half period, _~¢, is more reasonably 
interpreted without assuming a very large value of P, 
and M is understood to be due to the shift from the 
peak for the simple APD (anti-phase domain) struc- 
ture, (M [ /Q),* to that for the simple APD structure, 

( M  q- 11 M +  1).* 

Table 1. Examples of  the alloys with non-integral values 
for the half period, M 

Alloy /~ Reference 
Ag3 Mg 1.77 ,,~ 2.0 (a), (b) 
Cu3Au II 8,-~ 10 (c), (d), (e) 
Cu3Pt 6 ,-~ 8 (a) 
Cu3+Pd 7,~ 1 1 (a), (f), (g) 
CuAu II 5,,~ 6 (h), (i) 

(a): Schubert, Kiefer, Wilkens & Haufler (1955). 
(b): Fujiwara, Hirabayashi, Watanabe & Ogawa (1958). 
(c): Scott (1960). 
(d): Yakel (1962). 
(e): Yamaguchi, Watanabe & Ogawa (1962). 
(f): Watanabe & Ogawa (1956). 
(g):  Hirabayashi  & Ogawa (1957). 
(h): Jehanno & P6rio (1962). 
(i): Toth & Sato (1962). 

2. The present model 

The present model consists of a disordered structure 
composed of alternate series of M or M +  1 positive 
and negative layers, as illustrated in the continuing 

* For the classification of the one-dimensional anti-phase 
domain structures, i.e. a complex out-of-step structure, a com- 
plex APD structure and a simple APD structure, and the cor- 
responding notations, refer to part I of this series (Kakinoki 
& Minagawa, 1971). 

table shown as Table 2, where (M) and ( M + I )  re- 
present the units consisting of successive M and M +  1 
positive layers respectively, and (1Q) and ( M + I )  are 
those of successive M and M + I  negative layers 
respectively. Here, the positive and the negative layers 
mean the layers without and with the out-of-step vec- 
tor u respectively, as shown in Fig. 1. Table 2 implies 
that the unit (M) [or (/~)] is followed by the unit (M) 
[or (M)] with a probability, c~, and the unit ( M +  1) 
[or ( M +  1)] is followed by the unit ( M +  1) [or ( M +  1)] 
with a probability, fl, etc. In no case is a unit followed 
by a unit with the same sign, i.e., for example, the unit 
(M) is in no case followed by the units (M) or ( M +  1). 

(M) 
(M_+ 1) 
(M) 
(M+l)  

Table 2. The continuing table 

(M) (M+ 1) (37/) (M+ 1) 

0 0 ~ 1 -~  
o o ] - /~  /~ 
oc 1-~ 0 0 

1-/~ /~ 0 0 

If the existence probabilities of the four units (M), 

( M +  1), (/Q) and ( M + I ) ,  are denoted byf~, f2,.f3 and 
f4 respectively, we obtain 

1 - / ~  
A =A = ½w, w, = 2--~ ±/~ 

1 - ~  
A=A = ½w2 w2 = 2 Z-~- - - - f l  

with 

(3) 

f~ +f2 +f3 +f4 = wl + w2 = 1 . 

Relations (3) follow from equation [12],t i.e. 

HP = H and spur H = 1 (4) 

which is a self-consistent relation between the existence 
and the continuing probabilities. In the present case, 
H and P are matrices of order 4, and are expressed as 

D- Stacking direction 

(D ° 

(a) positive cell (b) neoative cell 

C) Aatom 0 B atom 

Fig. 1. Two kinds of unit cell in the one-dimensional anti- 
phase domain structure of A3B-type with an out-of-step vec- 
tor u = (a + b)/2. 

and 

H =  

1--cz 
p =  0 0 1 - f l  (5) 

1-o~ 0 
1 - f l  fl 0 

Using equation (3), we can rewrite H and P, by the use 
of minor matrices of order 2, as 

t Equation numbers in [ ] are those of Kakinoki & Komura 
(1965). 
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H = ½ [  h h ]  with 

P =  [~ P] with 

h= [.,wq 
14' 1 W2J ' 

I 
(6) 

Thus, equation (4) is equivalent to the relations 

h p = h  and s p u r h = l .  (7) 

Corresponding to this reduction of the order of the 
matrices from 4 to 2, Table 2 may be rewritten as a 
'convenient continuing table', shown as Table 3, 
where {M} represents the unit (M) or (_~r) and 
{ M +  1} represents the unit ( M +  1) or ( M +  1) and two 
units with the same sign are prohibited from following 
one another. 

(4) When ~ =fl = 0, we have w~ = wz = ½ and we get a 
structure ( M M + I )  or ( M + I  AS¢) with P = 2 M + I ,  
which is the simplest structure of the complex out-of- 
step structures.~ The corresponding unitary intensities 
of the superlattice reflexions are given by 

1 
It . . . . . . . . . .  for 1: even 

nl 
COS 2 ....... 

2P 

1 
It . . . . . . .  for l: odd 

nl 
sin 2 

2P 

(10) 

Refer to second footnote in § 1. 

Table 3. The convenient continuing table 

{M }  { M +  1} 
{ M }  ~ 1 - ~  
{ M + i }  I-# # 

From Table 3, together with equations (3) and (7), 
we can derive the following four special cases: 

(1) When c~=l and 0 < f l < l ,  we have w~=l  and 
w2=0 and get a simple APD structure, (M I &¢) with 
P = 2 M .  The corresponding unitary intensities of the 
superlattice reflexions are given by 

It = 0  
4 

sin2 n! 
P 

for l: even 

for I: odd (8) 

[refer to equation (I-16)t ]. It's are schematically shown 
in Fig. 2(a) for the case of M = 3, where ( is the param- 
eter along c*, c* being the vector reciprocal to c, and 

l 
f f = - p  /: 0, _+1, +2, +3, . . . .  (9) 

(2) When f l = l  and 0 < e < l ,  we have w l = 0  and 
w2=l  and get another simple APD structure, 
( M + I  I M + I )  with P = 2 ( M + I ) .  The corresponding 
unitary intensities of the superlattice reflexions are 
schematically shown in Fig. 2(c) for the case of M =  3. 

(3) When ~ = f l =  1, we have only w l+w2=  1 from 
equation (7) and we get a mixture of the two structures 
( M I M )  and ( M + l l  M + i )  with arbitrary weights, 
w~ and w2 = 1 -  w~. 

I" The equation numbers in part 1 of this series (Kakinoki 
& Minagawa, 1971) are written as (I-1), (I-2), etc. The unitary 
intensity is here expressed excluding the Laue function [refer 
to Iz in equation (I-6)]. 

(414) (c) 

I I 
(~ 1/8 3/8 5/8 7/8 1 

(34) or(43)  

0 1/7 2/7 3/7 4/7 5/7 6/7 1 

(b) 

(313) (a) 

b 1/6 3/6 5/6 i 
Fig. 2. Unitary intensities of superlattice reflexlons for (3 I ~), 

(3;~) or (4 3) and (4] ~). 

( M + I  

1 

(M M"~ ' )  0 
or ( M + I  M) 0 

(MIM) and 
M + I )  ( M + I ] M + I )  ( M + I I M + I )  

m 

(MIM) 

Fig. 3. The locations corresponding to the four special cases 
in the (~, fl)-map. 
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[refer to (1-15)]. l{s are schematically shown in Fig. 
2(b) for the case of M =  3. 

These four special cases are shown by the points and 
lines in the '(c~,fl)-map' shown in Fig. 3. Case (I) 
corresponds to the vertical line passing through the 
point (l ,0) on the map, case (2) to the horizontal line 
passing through the point (0, 1), case (3) to the point 
(1,1) and case (4) to the point (0,0). 

It is expected from Fig. 3 together with Fig. 2 that, 
if we start from the point (1,0) on the (0~,fl)-map, go to 
the left along the ~ axis to the point (0,0), and go up 
along the fl axis to the point (0, 1), then, for the dis- 
ordered structure composed of the units {3} ({M}) 
and {4} ({M+ 1}), the strongest peak in the diffraction 
pattern turns out to shift gradually from ( =  ~ to (=is  
passing over ( = ~  in Fig. 2, without any appreciable 
loss in its sharpness. Thus, the non-integral value for 
the half period, 371, in the one-dimensional anti-phase 
domain structure can be naturally explained by the 
present model without introducing a very large value 
of the period P. 

3. The intensity equation 

The diffraction intensity for the present model can be 
straightforwardly calculated by the use of the general 

theory of Kakinoki & Komura (1965) for one-di- 
mensionally disordered crystals. The present model 
corresponds to the case of different thicknesses in their 
theory, and the intensity equation is given by their 
equation [1], i.e. 

with 

N - - I  

Io(qO=NBo+ ~ (N-m)B,,+conj. (11) 
m = l  

Bm=spur VFQ m, Q = o P  and ~0=2g( (12) 

where N is the total number of units {M} and 
{M+I} ,  and conj. means the complex conjugate of 
the foregoing term. The meaning of the matrices V, F, 
Q, • and P will be explained below for the present 
model. 

If the structure factor of the positive cell [Fig. l(a)] 
is denoted by V, the structure factor of the negative 
cell [Fig. l(b)] is given by e V, where ~ is the phase fac- 
tor corresponding to the out-of-step vector, u = (a + b)/2, 
and 

e = ( - 1 )  h+k. (13) 

Therefore, the structure factors corresponding to the 
four units (M), ( M +  1), (~t) and ( M + I )  are given by 

1"0 

O' 1/81 
0"8 

0"6 t~ 

0"4 

0"2 

(41~,) 

I 
3/8 1~/2-- 

I 

I 
0"0 I (3 ~,) or (4 3) 

| I ~ ! . . . .  .k 

0 1/7 2/7 3/7 1/2 

- r 

i 

I . .  I . I . . . . . .  
O l ,  

__ _ . j  ~__,=.j ._ 

J L  -< , 

o 1/6 
~ Q  

0'0 0'2 0"4 0"6 0'8 1"0 

1 (3J:3) and (41~,) 
_ _  I I 

/811/6 3/8 1/2 

I _ _ _ _ ]  

. . . .  J 

(313) 

I 
112 

Fig. 4. The curves of D(() for M=3 calculated at intervals, 0.2, of 0c and fl in the half region corresponding to 0_<(_<{-. 
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u-~ sin M --¢- 
2 

V~ = V ~.. e ~"~ = V e -  i~,/2 e~M~,/2~. VV 1 
.=o sin -~ 

2 

~o 
sin ( M +  1) 2 

V 2= V E ein~°=V e iM<°/2=_Vv 2 
~o 

.=o sin _2_ 

V3=eV~ 

v4=~v~ 

(14) 

respectively, and the matrices V, F, • and Q in equa- 
tion (12) are expressed by the use of equation [4] and 
equations (3), (6) and (14), as follows: 

Iv ev] with v=  r + ,  o:v2] v= vv* t~v vj [v~v, v~vd 

- _ [ G z GIGze~'/z ] 
[G~Gze -~°/z G~ ] 

where 
~0 

~Pl sin (M + 1) -2 sin M 2- 
G1 . . . . . . .  and G2= 

sin ~- sin -~ 
2 2 

[ ; 0 ]  [ W l O  ] 
F=½ with w= [0Wz] '  (15) 

O=~b[0~ ~] with ~ = [ 1  0_, ,]  and ~b=e-'M'P, 

Q = ~ P = ~ b  [0q0q ] with q = ~ p  

1 - ~  

Thus, Bm given by equation (12) is calculated as 

Bm= spur V F Q " =  VV*(e~) m spur vwq m= VV*bm. (16) 

As a result, from equation (11) the unitary intensity 
l(~p) is given as 

N - - I  
i(09)= lo(q0 =Nbo+  ~ ( N - m ) b . , + c o n j  

VV*  m = l  

= ND(~o) + H(~p) (17) 
with 

bm= (e~b) m spur vwq m 
(=exp  { - i m ( M q ~ - n ) }  spur vwq m for h + k :  odd). (18) 

Here, D(~0) is the diffuse term and H(~0) the higher 
term. By calculation using the method of Kakinoki & 
Komura (1965) we obtain the result that (see Appendix 
I), 

for h + k : o d d ,  i.e. e = -  1, and that H(~p) is usually 
negligible. However, the four special cases shown in 
Fig. 3 are exceptions. In these cases D(~0)= 0 and H(~0) 
is given by equation (8) or equation (10) multiplied by 
the corresponding Laue function with N o = N / 2  (see 
Appendix II). 

4. Results 
The intensity distribution, D(fp), with ¢p = 2n( [equation 
(12)], is found to be symmetrical with respect to the 
points ~0 = 0 and 180 °, or ( = 0  and ½. Here, it is more 
convenient to use ( than ~0 since the main peak is ob- 
served corresponding to ~= 1/(2)Q). The diffuse term, 
D(~0) or D((), given by equation (19), is computed for M 
from 1 to 15 and for ~ and fl from 0.0 to 1.0, at inter- 
vals of 0.1. Fig. 4 shows the curves of D(() for M =  3 

I Dlo.ll 
p - 0 . 7 5  

~,, , 
1/21"6 

D7,8 
p =0.75 

1/15'6 

D5.6 
p -0.75 

1/11'6 

L 
1/7'6 

D3.4 
p =0.75 

D2,3 
p =0'75 

,--..- . - 7 -  

1/5"6 

0 113:6 1/2 
, ~ /; 

(a) 

~_ Rlo.8 ] 
I , , , . I _ 1121 "6 

R7-8 

1)15"6 

R5.8 

[ , |  i. ! 
1")11 "6 

R3-8 

~/7.6 
,1 I, 

R2.8 

, . I I , 

1/5"6 

R1.8 

, 1 , , I . 

i 0 1/a.6 I/2 'i 
, , g 

(b) 
Fig. 5. Unitary intensities in the case of h + k: odd calculated 

from the present model denoted as DM, M+I (a) and from 
the 'regular arrangement with uniform mixing' denoted as 
RM+,jM by Fujiwara (b). They are calculated with/~¢= M+ 0-8 
for M= 1, 2, 3, 5, 7 and 10 and then the strongest peak ap- 
pears at (=  1/(2/~) in each curve. 

D(~p)= 

2(1-o0 ( l - p )  (~+/~) 
2 - o ~ - / ~  

( 1-o,-p+oe+/~2-+oq3+cq~ cos-~,-÷-(o,'/J +p(o, +p)} cos M~o~ 
+ (f l -~+~(oc+f l ) )  cos ( M +  1)fp-(1 - ~ - f l )  cos (2M+ 1)~1 

(19) 
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calculated at intervals of  0.2, in ~ and fl in the hal f  
region corresponding to 0 < (_< ½. In order to show the 
detailed features of the intensity distributions, the 
intensity scale in Fig. 4 has been chosen so that the 
strongest intensity has the value unity, while Table 4 
gives the calculated values of the strongest intensities 
in the individual curves. Thus, the absolute intensity of 
each. curve in Fig. 4 is obtained by mult iplying by the 
corresponding value in Table 4. Strictly speaking, the 
intensity thus calculated should be further multiplied 
by the factor 4/(3 + w2)* in order to be appropriate to 
the correct irradiated volume of the sample. 

Table 4. The calculated values o f  the strongest intensities 
in the individual curves in Fig. 4 

1"01 L.P. L.P. L.P. L.P. L.P. L.P. 
0-8 I 197 115 67 38 19 L.P. 
0-6 182 103 60 34 22 L.P. 
0"4 248 131 77 47 36 L.P. 
0.2 494 204 112 71 58 L.P. 
0"0 L.P. 437 188 113 92 L.P. 

L_~a 0"0 0"2 

L.P.:Lauepeak. 

0.4 0.6 0.8 1-0 

The results of  the computed D( 0 are summarized 
as follows" 

(1) It is found from Fig. 4 that the intensity distribu- 
tion of the strongest peak is relatively sharp when 
f l=  0 (~ axis) or ~ = 0 (fl axis), in accordance with our 
expectation mentioned in §2. In other words, as we 
start from the point (1,0) in Fig. 4, go to the left along 
the c~ axis to the point (0,0) and go up along the fl axis 
to the point (0,1), the strongest peak gradually shifts 
from ~=-~,  corresponding to the simple A P D  struc- 
ture, (3 I 3), to (t = ~, corresponding to another simple 
A P D  structure, (414),  passing over (~=-~-, corre- 
sponding to the structure, (34) or (43). Thus, the non- 

* Refer to equation (20). 

integral value for the ha l f  period, )O, is given as 
M =  1/(2(0 by the present model assuming the disor- 
dered structure to be composed of the units {M} and 
{ M +  I}. 

(2) The intensity ratio of the second strongest peak 
at (3I to the strongest one at (a = 1/(2M) decreases from 
about  0.025 to about  0.010++ as M increases from 2 to 
15. These values are so small that only a set of satellites 
corresponding to + ~'~ would be observable in practice. 

(3) The hal f  width of the strongest peak decreases 
with increasing M as shown in Fig. 5(a), where D(O 
with ~ = 0  and f l=0.75  are plotted for M =  1, 2, 3, 5, 7 
and 10, denoted as DM, M+~. It can be seen that each 
plot has the strongest peak at (t = 1/(2&¢) with .~t___ M +  
0.8 and that the ratio of the hal f  width of the peak to one 
period corresponding to the distance between ( =  0 and 
( =  1 is less than ~ even for M =  1, so that the corre- 
sponding spot is not diffuse but remains relatively 
sharp. 

5. True  m e a n  domain  s ize ,  ( M )  

In papers referred to so far, the mean domain size has 
been defined as 3 t =  1/(2~i), where ~'t is the ( value of 
the strongest peak. Thisconvent ional  terminology comes 
by analogy with the fact that, in the case of the simple 
APD structure, an integral hal f  period, M, is correctly 
given by 1/(2~'0 or by 3/(2(3), where (3 is the ~-value of 
the second strongest peak with l =  3 in equation (8). On 
the other hand, in the present model, the true mean 
domain size, ( M ) ,  may be defined as 

( M )  = w I M + w 2 ( M +  I ) = M + w 2 = M  + 
IB0~ 

2-7-- - f i "  

(20) 

t The suffix, 3, in (3 comes  from the fact that the second 
strongest peak appears at 1= 3 in the case of the simple APD 
structure as can be seen from equation (8). 

In the simple APD structure, the intensity ratio is ex- 
pressed as sin2 (z~/2M)/sin2 (3rc/2M) by equation (8); for ex- 
ample, the intensity ratios are about k, ~ and + in the cases 
of (3 I~), (41~) and (51 5) respectively. 

Table 5. The structures corresponding to the model o f  regular arrangements with uniform mixhlg in the cases of  
A M = 0 - 1 , 0 . 2 , . . . , 0 " 9  and the corresponding period, P, given by equation (1) 

M 2M (M I Ad¢) 
M+0.1 10M+ 1 (M+ 1 371 M f t  
M+0.2 10M+2 ((M+ l AT/ M f /  
M+0.3 10M+3 (M+i  217/ M M+ 
M+0.4 10M+4 ((M+I ]fl M + I  37t 
m+0.5 2M+ 1 (M+ 1 ATl) 
M+0"6 10M+6 ((M+I M + l  M M + I  
M+0"7 10M+7 (M+I  M+I  M + I  ]f/ 
M+0.8 10M+8 ((M+I M + I  M + I  M + I  
M+0.9 10M+9 (M+I  M + I  M + I  M + I  
M + I  2(M+ 1) (M+I  [ M + I )  

Structure* 

M J~ M Aq¢ M f / )  
M)  I ( M +  l M M M Aqt)) 

l M 37I M +  l f /  M A7/) 
M) I ( M +  1 M M +  1 M ./~)) 

M) I (M+ 1 M+ 1 A7/ M+ 1 AT/)) 
M + I  M + I  M M + I  M+I  /lqt) 

M) I (M+I  M+I  M + I  M+I  As/)) 
M + I  M + !  M + I  M + I  M + I  37/) 

* Foc the notation of tile structures, refer to part I of this series (Kakinoki & Minagawa, 1971). 

Symbol 
RM 
R M-.: 0" 1 
RM+0.2 
RM+0.3 
RM+0.4 
RM+0.5 
RM+0.6 
RM ~ 0-7 
RM+08 
RM~. 0.9 
Rm+l 
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In order to distinguish ( M )  from ]Q, M is called the 
apparent mean domain size. Since 1/(2()1 is not always 
equal to 3/(2(3) for the structure with a non-integral 
period, we may have two kinds of M, one given by 
half 2Q~= 1/(2(1) and the other by Ma = 3/(2~3). These 
three kinds of mean domain sizes, i.e. ( M ) ,  M1 and ~r3, 
do not always coincide, as can be seen in Fig. 6 where the 
loci for ( M)  = M~ = M~ = M +  AM are shown by dotted. 
solid* and broken lines respectively, for M =  1 (a), 
3 (b) and 7 (c) at intervals of AM = 0.1. The loci for con- 
stant (~ (i.e. fill) and constant (3 (i.e. ~I3) are ob- 
tained by differentiating D(e) with respect to ¢. It is 
clear from Fig. 6 that ( M ) ,  Mt and M3 do not coincide 
with one another. Correctly speaking, ( M )  should be 
obtained by substituting the values of e and fl corre- 
sponding to the cross point of the loci of observed (~ 
and (37 into equation (20). Practically speaking, how- 
ever, because the second strongest peak at (3 is usually 
too weak to be detected and the strongest peak at (~ is 
relatively sharp when f l=0 (~ axis) or c~=0 (fl axis) as 
mentioned in §4 (1), the cross points seem to be dis- 
tributed near the ~ and fl axes where ( M ) ,  _~rl and _~r~ 
are nearly equal to one another. The differences among 
them become smaller as M increases, as shown in Fig. 
6(a), (b) and (£). In these cases, the apparent mean 
domain size, M, is practically the same as the true 
mean domain size, ( M ) .  

6. Discussion 

An interpretation of the non-integral value for the 
half period, M, was first given by Fujiwara (1957) 
using a model of the regular arrangements with uniform 
mixing which is defined by a step function. He refined 
the model by introducing some disordering, and pro- 
posed a model of the statistical assembly of  irregular 
arrangements. The intensity expressions for these two 
models were recently discussed in detail in part II of 
this selies (Kakinoki & Minagawa, 1972). 

Table 5 shows some examples of the regular arrange- 
ments with uniform mixing which, in part II, we called 
the standard structures. These structures with various 
values of f f I = M + A M  are denoted by RM+,~M, and 
some examples of the intensity distributions for RM+0.a 
are shown in Fig. 5(b) where AM=0.8  nearly corre- 
sponds to 0c=0 and /3=0.75 which are assumed for 
Fig. 5(a). The intensity ratios of the second strongest 
to the strongest peak in these examples are listed in 
Table 6.$ Since these ratios are greater than ~, the 
second strongest peaks should be strong enough to be 
observed as are both the second and third strongest 
peaks from the simple APD structure. In practice, 

* Some of them disappear at some points. This is because 
D(0 shows not a maximum but a minimum at ~I after the 
point. 

I" When M =  1 there is no peak at ~3. 
Refer to equation (I1-33). The equation numbers in part 

II of this series (Kakinoki & Minagawa, 1972) are written as 
(II-1), (II-2), etc.  

however, the second strongest peak is hardly detectable 
for non-integral structures. It was for this reason that 
Fujiwara introduced the model of statistical assembly 
of  irregular arrangements which, in part II, we called 

" "  . - - ' °  . ' ' . "  "o" o . . . . . .  . . . - "  . "  . "  ,,"st# o 

0.8 . . . .  : - ' . . " - - - - - - > < .  " ' "  . - ' "  ,," , " , '  ,"!/ 

0 " 6 ~  

I o. 1 ,.,9" . , :V , . ] l \ / i  
V" "/I ) / ,, 1,3 1.1i 

_ ="°° o I t'le" "1 

(1 2) 0"2 0"4 0"6 1"2 0"9 (111') 
_- Q 

(a) 

(4l~.) . . . . . . . . . . .  z,. -~;.:; , , ,  
. . . . . . .  " ' ' - o .  - " " " o sss C'zT/ll 

v 

0 " 4 . ~  3"6 ,, , ,,~ 

I I 1 .~ 'l," 
I; 

/ / i t - iL' 
/ . . / . / .  L 

(3 E) 0.2 0-4 0.6 0.8 (313) 

(81 ) I _ _ _ ,  

~ 7 " 9  _. ~ : . ~ . . , ~  

,v," ,4 /,; ?, t, 
o, Y 

(7 §) 0.2 0.4 0.6 0.8 (717) 
:- Q 

Fig. 6. Loci for the constant values of ~M)=M+w2 at inter- 
vals of 0.I (dotted straight lines), of M I  = ] / (2( i )  at intervals 
of 0. I (solid curves) and of M3 = 3/(2(3) at intervals of 0.] 
(broken curves). (a), (b) and (c) show the cases of  M =  ], 3 
and 7 respectively. 
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briefly the statistical assembly. According to an inten- 
sity equation obtained for this model [refer to (II-46)], 
the value of the ratio may reduce to any small value 
including 0, according as a standard deviation, o', of 
the distribution function* increases, as shown in Table 7. 

The present model can easily be generalized by 
considering many kinds of units such as 

. . . ,  { M - 3 } ,  { M - 2 } ,  { M - l } ,  {M}, 
{M+ 1}, {M+2},  {M+3},  . . .  

Table 6. The intensity ratios of  the second strongest peak 
to the strongest one in the examples shown in Fig. 5(b) 

Structure Ratio 
R1o.8 0-111 
R7.8 0.112 
R5.8 0.112 
R3.8 0.113 
R2-8 0-115 
RI.8 0"121 

Table 7. The intensity ratio of  the second strongest peak 
to the strongest one in the model of  statistical assembly 
o f  irregular arrangements with M = l . 8  and P = 1 8  

Refer to equation (II-46). The ratio decreases with increas- 
ing o', a standard deviation [refer to equation (II-36)]. 

o- Ratios 
0 0.093 
0.05 0.093 
0.10 0.086 
0.16 O.O6O 
0.20 0.042 
0.25 0.024 
0.32 0.009 
0.40 0.002 
0"50 0.00000 

As mentioned in the introduction, Fujiwara's model 
should take account of the very large value of the 
period P necessitated by equation (1). On the other 
hand, according to the model introduced in the present 
paper, the non-integral value for the half period, /~¢, 
is due to the peak shift caused by the disordering be- 
tween {M } and {m + 1} and it is not necessary to take 
account of a very large value of P. By the present 
model, in addition, the intensity of the second strongest 
peak may become less than 2.5% of that of the 
strongest one if the half width of the strongest one 
is sufficiently narrow. Thus, the present model may be 
an alternative to that of Fujiwara for explaining the 
non-integral value of the half period. 

The appearance of a set of satellites can often be 
explained qualitatively by assuming a sinusoidal 
modulation of the lattice as was the case for the super- 
structure of NaNO2 (Yamada, Shibuya & Hoshino, 
1963). However, if the experimental accuracy is not 
adequate to satisfactorily determine the intensity of 
the second strongest peak, either of the disordered 
models given by Fujiwara and by the present author 
may be taken as a possible model to explain those 
satellites. 

* Refer to equation (II-36). 

with appropriate weights, and the weighted mean of 
them is given by M. By this generalization, the ratio 
of the second strongest intensity to the strongest 
one may further be reduced. 

Fujiwara, Hirabayashi, Watanabe & Ogawa (1958) 
observed the second strongest peak of very faint inten- 
sity in the case of M=1 .77  (Ag3Mg). The present 
model does not seem to be appropriate to this case 
because it predicts no maximum other than the main 
peak, as shownby DI.2 in Fig. 5(a). On the other hand, 
in cases when M is larger than 2, the situation is quite 
different because the present model gives a weak, 
diffuse maximum at the position of the second 
strongest peak, as shown by DM,M+I other than D1, 2 in 
Fig. 5(a). 

In connexion with the calculation in the present 
paper, Kakinoki (1971) made the following two com- 
ments, which are worth quoting. 

(1) If h + k  is even, as e given by equation (13) be- 
comes unity, there is no distinction between the posi- 
tive and the negative layers, and we should have only 
the fundamental reflexion, unaccompanied by any 
superlattice reflexion. In this case, the intensity equa- 
tion (17) should give the weighted mean of the Laue 
functions corresponding to the layer numbers from 
N M  to N(M+ 1) with appropriate weights we, i.e. 

sin z n(NM+s) (  
~, Ws s=O sin 2 n( 

(2) Another method of calculating the intensity equa- 
tion for the present model is given by the method sim- 
ilar to that given by Kakinoki & Komura (1965). In 
this method, the intensity equation is the same as equa- 
tion (19) with a slight modification in the constant 
factor for the superlattice reflexions, and it gives a 
single Laue function (not the weighted mean of the 
Laue functions) for the fundamental one. 

APPENDIX I 
Derivation of equation (19) 

A method for deriving the intensity equation of the 
type 

N--! 

lo(~o)=UBo+ ~ (U-m)B, ,+conj .  (A1) 
m=l 

B,. = spur VFQ'" 

which was given as equation [1] for the case of different 
thicknesses, was given by Kakinoki & Komura (1965). 
Their results are summarized as follows" 
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Step 1" Expand the characteristic equation, equation 
[33], as 

R 

det ( y l - Q ) =  ~ a,,y"-" (A2) 
n=0 

where R is the order of matrices V, F and Q and ao = 1. 
Step 2: Calculate B,, for m from 0 to R -  1. 
Step 3: Substitute a,'s and B,,,'s obtained above into 

equation [40] i.e. 
R - 1  

Do+ ~ Dp+conj. 
D(~0) = ,=1 (A3) 

R 

Co+ ~ C~+conj. 
p = l  

where 
R--p 

Cp= ~ a.a*+~. (A4) 
n--0 

R-- 1 - p  R 

Dp= ~ a,,E,+p with E,~= ~ a*Bm_q (A5) 
n = 0  m=0 

which were given by equations [41a] and [41c] respec- 
tively. 

In the present case, the quantities in these equations 
become as follows: 

R = 2, Bm - +  bin, V ---> V, F -+ w, Q --+ e~bq (A6) 
and 

{ " . Dt = b*~ + a~bo + azb~ , 
Do=alb*~ +a*~b~ +(1 +a~a*~-aza~)bo (A7) 

which were given by equation [42b] with equation 
[42a]. Hence, the above three steps are carried out by 
the use of equations (3), (6), (14), (15) and (18) as 
below: 

Step I" 

Q -+ t(~q=eq~ (1-f l )e  -i~° fie -i°' " 

Therefore 

y -  ~e~b - (1 - ~)e~b 
det (y l -Q) - -~  -e~b(1-/3)e - ~ y - eckfle - ~ 

= yZ - eck(o~ + fle- "Oy - ( 1 -  o~ - fl )(~2e- i~'. 

Thus, we have 

al= -ed?(~ +fle-i'~), a~= - ( l - ( z - f l ) d p 2 e  -i~'. (A8) 

Step 2" 
[vtv~ vtv~l = [ C,~ a~aze'~°'21 

with 

sin M ~o 
2 

G~ . . . . . . . . . . .  and Gz = 
sin -~ 

2 
and hence, 

sin (M+ 1) ~0 
2 

. . . . . . . . . . . . . . .  (A9) 
sin ~ 

2 

Bm ~ bm :  ( ~ ) m  spur v w q  m 

. . . .  (-e#)m spur [(l-fl)G~ ( 1 -  oOGi Gae i~'12] 
2 - a - f l  ( l - f l )G1G2 e-'~;: (1 - a )G i  J 

o~ 1 - o q  m 
x ( l_f l)e_i~,f le_i~j  , 

from which we have 

1 
bo= 2 -  ~--fl {(1-fl)G~ +(1-a)GZ},  

e~b {a( l - f l )G z +fl(1-cz)G~e -i~ bl= 2 - a - f l  

+ 2 ( l - a )  (1-fl)G, G2e-iq'/2}. 

Step 3" 

Co = 1 + ala~ + a2a* 

=2(1 _a_f l+~2+fl2+~f l+~f l  cos ~o), 

C1 + C~ =ax +a'; +ala~ +a~a2 

= -2e[{~-fl+fl(~ +fl)} cos Mq~ 

+ { f l - a+a(a+f l )}  cos (M+ 1)q~], 

C2+ Cz =a2+a  z 

= -2 ( I  - a - f l )  cos (2M+ 1)q~. 

Thus, we can calculate the denominator ot equation 
(A3) as 

Co + C1 + C~' + C2+ C~ =211-0~--~-}-0~2-}-[32--~-0C/] 

+~fl cos q~-e{o~-fl+[3(o~ +fl)} cos Mip 

- e{ f l -o~  +~(oc + fl)} cos (M + 1)q~ 

- (1  - a - f l )  cos (2M + 1)~0]. (A11) 

The numerator of equation (A3) is calculated as fol- 
lows" 

Do+D~ + D~ = bo(l + at + a'~ + ala~ - a2a~) 

+bl(l  +a~' + a~) + conj. 

2 ( 1 - a )  (.!-7fl).-(-~+fl) [G~ +G~ 
2 - ~ - f l  [ 

~P {G~ cos - 2 G ,  Gz cos 2 - e  (M+ 1)~0 

+G~ cos M~o-2GtG2 cos (2M+ l) ~2 } ] 

= ( l - e )  2(1 - a )  (1-f l )  (a+fl) 
2 -c~- f l  

cos q~ x (G{+GZ2-2G~G2 2) 

= ( l - e )  2(1 - a )  (1 - f l )  (~+/3) 
..... 2 - ~--/~- . . . . .  (AI2) 

(A10) 
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because 
G~ z cos (M + 1)~0 + Gz z cos M~ 

-2GIG2 cos(2 M +  1) ~p 
2 

-G~+GZz-2GtG2 cos q~ = 1 (A13) 
- -  2 -  " 

Thus, we have finally 

and finally l((p) becomes 

l(~o)=vTv~ sin 2 No(M~o- n) 

sin2 M~o- n (AI9) 
2 

where we put N=2N0 because we have P = 2 M .  From 
equation (A19), we have the Laue peaks only at 

( 1 - ~ )  ( l - t )  (~+fl) 
(1 - ~ )  2 = ~ - ~  ........ 

D(9)= [ i  _~_fl+az+fl2+~fl+oq~ cos ~o-t{a-fl+fl(o~ +fl)} cosMg] " 
~ - e { f l - ~  +cz(~ +fl)} cos (M + 1 ) 9 - ( 1 - a - f l )  cos (2M + 1)~o] 

(A14) 

From this equation, we have 

D(~0) = 0 for h + k: even i.e. e = 1 
D(q0=0 for h + k : o d d  i.e. e= - 1  

and a =  1, f l= l ,  or a = f l = 0  (A15) 

and, in other cases, equation (19). 

APPENDIX II 
Direct derivation of intensities for four special cases 

(§2) using (17) and (18) 

In part I of this series, equations (8) and (10) were 
derived from the corresponding structures, i.e. ( M  I )~) 
and (M.~¢+i)  respectively. But the same results can 
be derived directly from equation (17) with equation 
(18) i.e. 

N - - 1  

l(~o)=Nbo+ ~ ( N - m ) b m + c o n j .  (AI6) 
m = l  

with 

bm=(e~b) m spur vwq m 
=exp { - i m ( M ~ o - n ) }  spur vwq m. (A17) 

The unitary intensities of the superlattice reflexions 
for the four special cases shown in Fig. 3 (§2) are direct- 
ly derived as follows: 

Case (1) ~= 1 and 0<f l<  l,i.e. (MI A~r). 
In this case, we have wl = 1 and w2=0 from equation 

(3) and the necessary quantities become as follows" 

w l p = [ 1 0 ] ,  P = [ 1  ~]" 

Therefore 

1 0 
[V~Vl 0] ,  q=[ (1  fl)e -tq' ' ] 

vw= t v ~ v l  o - f l e - i~ ' j  

therefore 
v w q  m = V W .  

As a result, we get 

b,,=v~vl exp { - i m ( M q ~ - n ) }  (Al8)  

M~o-n = l ' n  l " 0 ,  +1, +2, . . .  
2 

I 
i.e. ~= -ff with 1: odd, 

and hence we get the result 

l ,(,) 
N2o - =4(v~vl)~=z/~, - - -  

4 
nl 

sin 2 -p 

(A20) 

with l: odd (A21) 

in agreement with equation (8). 

Case (2) t =  1 and 0 < ~ < 1, i.e. ( M +  I I M +  1) 
In this case, we have wl=0  and w2= 1 from equa- 

tion (3) and the necessary quantities become as follows" 

w[0 ] ] 
therefore 

v w = [ 0  v:v2] l - a  . [ ;  e,O], 
therefore 

v w q  m ----- v w e -  imcp. 

As a result, we get 

bm=v~v2 exp [ - i m { ( M +  l)q~-n}] . (A22) 

In a similar way to case (I), we can derive, by the use 
of equation (A22), the same result as equation (A21) 
with P = 2 ( M +  1) and v~ replaced by v2. 

. . . . . . .  

Case (3) ~ =f l=  1, i.e. (M I M )  and ( M +  1 [ M +  1) 
In this case, from equation (7) we have only the rela- 

tion wl + w2 = 1, and the necessary quantities become as 
follows" 

[wt 0] w i t h w 2 = l - w l ,  p=  [1 0 ] ,  
w =  LO w2J 

therefore 

vw~" [wlv~vl w2v;v2] ' q =  e- =dp, 
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therefore 

0 
vwq'=vwCm=vw [~ e-im¢]. 

Thus, we get 

bm=wiv~v I exp ( - im(Mg- - rc )  } 
+W2/);V 2 exp [ - i m ( ( M +  l)9-re}] (A23) 

and finally I(~p) becomes 

sin 2 No(Mq~ - re) 
l(9)=wiv~vx 

sin2 Mtp - zc 
2 

sin 2 mo{(M+ 1)tp- re} 
+ WzV~ v2 

sinZ (M + 1)~p - re (A24) 
2 

which is the mean intensity of those due to (MI M) 
and ( M +  1 I M +  1) with weights wx and w2 respectively. 

Case (4) ~=f l=0 ,  i.e. ( m  M +  1) or ( m +  1 )Q) 
In this case, we have wl=w2=½ from equation (3) 

and the necessary quantities become as follows: 

w=~ [~ 0 ] ,  p= [0 ~] 

therefore 

w=, ,  q= [e°,O 1] q =e ,O, 
therefore 

v for m = 2n 
vwq" = {e- i. .  x vq for m = 2n + 1. 

As a result, we get 
.[b0 f o r m = 2 n  

bm= e-  ir.o × [GIG2 for m = 2n + 1 

where 

(A25) 

[ bo= ½(G 2 + G 2) 
~p P~o 

0 = ( 2 M + l )  2- - r e=  2 -Tz, P = 2 M + I  
(A26) 

and Gi and G 2 are given by equation (A9). Finally 
with N =  2No, I(q0 becomes, 

I(~o) = 2bo { No + 
NO--1 } 

( N o -  n)e -i'a° +conj. 
n=l 

N - I  
+GIG2 N +  ~ (N-m)e - im°+con j .  

m=l 

NO_I }] 
-2 No+ ~ (Uo-.)e -'"2°+conj. 

n = l  

sin z NoO 
= (G z + G 2 +2GIG2 cos 0) sin 2 0 

Equation (A27) gives the Laue peaks at 

l / :0 ,  +1, +2, ( = p  . . .  

at which we have 

1(;) 
N2 . . . . . .  {G2+GzZ-( - 1)'2GxG2} ~=t/p 

1 
for l: even 

7~1 
COS 2 

2P 

1 
~zl for l: odd 

sin z 
2P 

in agreement with equation (10). 

(A27) 

(A28) 

The author would like to express his sincere thanks 
to Professor J. Kakinoki for his kind guidance and for 
many helpful discussions. 
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